On the Halley class of methods for unconstrainedoptimization problems

نویسنده

  • Haibin Zhang
چکیده

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Third-order methods can be used to solve efficiently the unconstrained optimization problems, and they, in most cases, use fewer iterations but more computational cost per iteration than a second-order method to reach the same accuracy. Recently, it has been shown by an article that under some conditions the ratio of the number of arithmetic operations of a third-order method (the Halley class of methods) and Newton's method is constant (at most 5) per iteration. Automatic differentiation (AD) can compute fast and accurate derivatives such as the Jacobian, Hessian matrix and the tensor of the function. The Halley class of methods includes these high-order derivatives. In this paper, we apply AD efficiently to the methods and investigate the computational complexity of them. The results show that under general conditions even including the computation of the function and its derivative terms, the upper bound of the ratio can be reduced to 3.5.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical technique for solving a class of 2D variational problems using Legendre spectral method

An effective numerical method based on Legendre polynomials is proposed for the solution of a class of variational problems with suitable boundary conditions. The Ritz spectral method is used for finding the approximate solution of the problem. By utilizing the Ritz method, the given nonlinear variational problem reduces to the problem of solving a system of algebraic equations. The advantage o...

متن کامل

Sinc-Galerkin method for solving a class of nonlinear two-point boundary value problems

In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...

متن کامل

A modification of Chebyshev-Halley method free from second derivatives for nonlinear equations

‎In this paper‎, ‎we present a new modification of Chebyshev-Halley‎ ‎method‎, ‎free from second derivatives‎, ‎to solve nonlinear equations‎. ‎The convergence analysis shows that our modification is third-order‎ ‎convergent‎. ‎Every iteration of this method requires one function and‎ ‎two first derivative evaluations‎. ‎So‎, ‎its efficiency index is‎ ‎$3^{1/3}=1.442$ that is better than that o...

متن کامل

A New Strategy for Choosing the Radius Adjusting Parameters in Trust Region Methods

Trust region methods are a class of important and efficient methods for solving unconstrained optimization problems. The efficiency of these methods strongly depends on the initial parameter, especially radius adjusting parameters. In this paper, we propose a new strategy for choosing the radius adjusting parameters. Numerical results from testing the new idea to solve a class of unconstrained ...

متن کامل

Existence results of infinitely many solutions for a class of p(x)-biharmonic problems

The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2010